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A B S T R A C T   

A regional ocean biogeochemical model for the Bering Sea is used to dynamically downscale three Earth System 
Models from the CMIP5 archive under the RCP 8.5 and RCP 4.5 scenarios. These continuous model runs, 
completed in conjunction with the Alaska Climate Integrated Modeling Project (ACLIM), span the 2006–2100 
timeframe and project continued warming, freshening, and ocean acidification (OA) for the Bering Sea shelf 
region over the 21st Century, with larger magnitude changes in the RCP 8.5 scenario. The downscaled pro-
jections suggest that annual average surface seawater aragonite saturation state (Ωarag) for the Bering Sea shelf 
will decrease by 0.63–0.86 under RCP 8.5 and 0.18–0.43 under RCP 4.5 by 2100. Surface pH values decrease by 
0.31–0.35 under RCP 8.5 and 0.07–0.13 under RCP 4.5. Seasonally, Ωarag < 1 conditions start to emerge for ~2 
months per year during winter between 2015 and 2030 under both climate change scenarios. Under RCP 8.5, the 
duration of these undersaturated conditions grows to ~5 months per year by 2100, occurring from mid-October 
through mid-March. Under RCP 4.5, these conditions remain constrained to 2–3 months per year by 2100. In 
both scenarios, summer months maintain conditions of Ωarag > 1 due to primary productivity, though the 
maximum in Ωarag is greatly reduced under RCP 8.5. Spatially, the regions of greatest pH and Ωarag decline are 
the southeastern Bering Sea shelf and the outer shelf domain near the shelf break. Linear trends in carbonate 
variables between our downscaled simulations and the Earth System Model (ESM) output are comparable and 
indistinguishable compared to the model spread. However, bottom water trends differ somewhat between the 
ESM and our downscaled simulations, with the latter more consistently resolving the different shelf domains. The 
OA information provided by these downscaled simulations can help inform biological sensitivity experiments and 
longterm strategic planning for marine fisheries management.   

1. Introduction 

The global oceans absorb 25–31% of present annual anthropogenic 
carbon emissions, and have taken up approximately 39% of all anthro-
pogenic fossil carbon emissions since the start of the Industrial Revo-
lution (Khatiwala et al., 2009; McKinley et al., 2017; Gruber et al., 2019; 
Friedlingstein et al., 2020). However, the dissolution of CO2 in seawater 
shifts the marine carbonate system to a state of lower pH and reduced 
carbonate saturation states in a process referred to as ocean acidification 
(OA; Feely et al., 2004). Experimental studies have shown that the 
reduced pH and carbonate saturation states may negatively impact some 
marine organisms, particularly marine calcifiers (Kroeker et al., 2013; 

Doney et al., 2020). Observational evidence suggests that global pH has 
already decreased by 0.1 (~30% increase in [H+]) since the start of the 
Industrial Revolution, with global Earth System Models (ESM) projec-
ting an additional decrease of ~0.3 (~100% increase in [H+]) by 2100 
under high CO2 emissions scenarios (Orr et al., 2005; Bopp et al., 2013; 
Kwiatkowski et al., 2020). Arctic and subarctic oceans are particularly 
vulnerable to OA because these systems have naturally low pH and 
carbonate saturation states due to colder water temperatures that in-
crease the solubility of CO2 (Orr et al., 2005; Fabry et al., 2009). 
Furthermore, large Arctic river systems deliver substantial amounts of 
terrestrial carbon and freshwater to Arctic waters, which further 
decrease carbonate saturation states (Chierici and Fransson, 2009; 

* Corresponding author. Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA. 
E-mail address: darren.pilcher@noaa.gov (D.J. Pilcher).  

Contents lists available at ScienceDirect 

Deep-Sea Research Part II 

journal homepage: www.elsevier.com/locate/dsr2 

https://doi.org/10.1016/j.dsr2.2022.105055 
Received 9 April 2021; Received in revised form 23 February 2022; Accepted 5 March 2022   

mailto:darren.pilcher@noaa.gov
www.sciencedirect.com/science/journal/09670645
https://www.elsevier.com/locate/dsr2
https://doi.org/10.1016/j.dsr2.2022.105055
https://doi.org/10.1016/j.dsr2.2022.105055
https://doi.org/10.1016/j.dsr2.2022.105055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsr2.2022.105055&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep-Sea Research Part II 198 (2022) 105055

2

Mathis et al., 2011; Semiletov et al., 2016). Increased precipitation, 
sea-ice loss, and river runoff with climate change may further strengthen 
these effects, though a concurrent increase in nutrient delivery may 
further complicate the net effect (Steiner et al., 2014; Terhaar et al., 
2019, 2021a, 2021b). Small shifts in ocean dissolved inorganic carbon 
(DIC) concentrations can cause large swings in some carbonate vari-
ables, including pH and Ωarag. In a system naturally close to important 
biological and geochemical thresholds, these combined effects make 
Alaskan waters especially susceptible to OA. 

The Bering Sea system is composed of a deep offshore basin and a 
wide coastal shelf. The shelf is further divided into three physically 
distinct regions consisting of the inner, middle, and outer shelf domains, 
typically defined by the 50 m, 100 m, and 200 m isobaths, respectively 
(Askren and thesis, 1972; Coachman, 1986; Stabeno et al., 1999). Sub-
stantial portions of the inner and middle shelf are normally covered by 
sea ice during winter months, though the outer shelf can also be near 
completely ice covered during particularly cold years (Stabeno and Bell, 
2019). Sea-ice retreat typically occurs in April–May, though warmer 
water temperatures and southerly winds have led to earlier ice retreats 
(February–March) and reduced sea-ice extent in recent years (Stabeno 
and Bell, 2019). The timing of the spring ice retreat impacts the initia-
tion of the spring bloom; an earlier ice retreat enhances surface strati-
fication through freshening and delays the bloom to May–June, while a 
later ice retreat initiates an earlier ice-associated bloom in colder water, 
which is associated with larger, lipid-rich diatoms (Hunt et al., 2002, 
2011). This variability in bloom timing and composition can further 
alter benthic-pelagic energy pathways and have reverberating effects 
throughout the entire ecosystem (Moore and Stabeno, 2015). The 
complexity of this system has made it challenging to understand the 
physical-biological connections and make informed predictions for how 
the system will respond to climate change. Global models generally 
disagree on whether continued warming will lead to a net increase or 
decrease in productivity. A longer growing season with less sea-ice 
extent may increase productivity through the first half of the 21st 
Century, however increasing stratification and decreasing nutrient 
supply may counter this effect and lead to a net decrease by the end of 
the century (Bopp et al., 2013; Vancoppenolle et al., 2013). Observa-
tional studies do tend to support a recent increase in productivity 
(Arrigo and van Dijken, 2015; Lewis et al., 2020), though there is still 
considerable uncertainty, especially regarding how increased river 

runoff and coastal erosion may mobilize additional nutrients (Vonk 
et al., 2012; Terhaar et al., 2019). 

Ocean waters that are already undersaturated with respect to 
aragonite (a polymorph of calcium carbonate) occur seasonally on the 
Bering Sea shelf, indicated by aragonite saturation state (Ωarag) values 
less than one (Mathis et al., 2011). These conditions occur along the 
inner shelf domain and at the bottom on the middle and outer shelf 
domains (Mathis et al., 2011). Low Ωarag on the inner shelf is driven by 
freshwater runoff from river systems, primarily the Yukon and Kus-
kokwim Rivers. This freshwater runoff is supersaturated with carbon 
due to respiration of terrestrial organic matter (Striegl et al., 2007). 
When mixed with the coastal water mass, this runoff increases the DIC to 
total alkalinity (TA) ratio, which pushes the marine CO2 system towards 
lower pH and Ωarag (Mathis et al., 2011; Pilcher et al., 2019). Low bot-
tom water Ωarag on the middle and outer shelf is driven by bacterial 
respiration of sinking organic matter generated by surface mixed layer 
phytoplankton productivity (Mathis et al., 2011). Evidence of subsur-
face calcium carbonate dissolution on the shelf further suggests that 
these seasonal manifestations of OA impacts are already occurring 
(Cross et al., 2013). Previous projections using a global-scale Earth 
System Model indicate that annual average surface Bering Sea surface 
waters will become undersaturated with respect to aragonite (Ωarag < 1) 
on the annual mean by around 2062 under a high CO2 emissions sce-
nario (Mathis et al., 2015a). 

The Bering Sea is one of the most productive marine ecosystems on 
Earth and supports a U.S. fishery that provides $3 billion in annual value 
and at least 40% of total U.S. fish catch by weight (Wiese et al., 2012). 
The heavy reliance of many Alaskan coastal communities on these 
fisheries for commercial and subsistence use puts them at greater risk to 
the effects of OA (Mathis et al., 2015b). Experimental studies have noted 
that larval and juvenile red king crab (Paralithodes camtschaticus) and 
Tanner crab (Chionoecetes bairdi) survival are both reduced under lower 
pH conditions (Long et al., 2013a,b; Long et al., 2016). Based on these 
sensitivities to pH, a bioeconomic model predicted a substantial decline 
in Bristol Bay red king crab catch if the effects of OA were not considered 
within the fishery management process (Seung et al., 2015; Punt et al., 
2016). Behavioral changes in Pacific cod (Gadus macrocephalus) larvae 
have been shown to reduce size and lipid content by 2 weeks of age, but 
this response was reversed (i.e. larger size and higher lipid content, 
though not statistically significant) by 5 weeks of age, pointing to a 
stage-specific response (Hurst et al., 2019). Conversely, some pelagic 
fish species such as walleye pollock (Gadus chalcogrammus) have dis-
played resilience to OA in experimental settings (Hurst et al., 2013). 
However, pelagic fish species may still be indirectly affected through 
food web changes. For example, pteropod shell dissolution has already 
been observed in the Bering Sea and pteropod populations are at high 
risk with continued OA (Bednaršek et al., 2021). 

Earth System Models (ESMs) are one of the best available tools to 
project how the Earth system may respond to anthropogenic climate 
change. These fully coupled models provide skillful reproductions of 
historical ocean conditions at the basin scale, but are often less effective 
in regional settings, due in part to insufficient spatial resolution and the 
parameterization or omission of critical coastal processes (Ward et al., 
2020). A growing number of efforts have utilized statistical and 
dynamical techniques to downscale output from an ESM to a regional 
setting (Hermann et al., 2019, 2021; Holdsworth et al., 2021; Siedlecki 
et al., 2021). Dynamical downscaling techniques require the use of a 
regional ocean model and are computationally expensive due to the 
higher spatial resolution. Despite this computational cost, the added 
benefit of higher spatial resolution and the capacity to resolve critical 
coastal shelf features makes the technique particularly appealing for 
providing climate change information within marine fisheries settings 
(Drenkard et al., 2021). Recent work by the Alaska Climate Integrated 
Modeling project (ACLIM) demonstrated this benefit by combining 
dynamically downscaled projections of ocean conditions in the Bering 
Sea with a variety of climate-enhanced fisheries and socio-economic 

Fig. 1. Bering10K model domain with color shading for model depth. The black 
contour lines for the 50, 100, and 200 m isobaths are labeled, representing the 
boundary for the inner, middle, and outer shelf domain respectively. The white 
boxed area is the Eastern Bering Sea Bristol Bay red king crab management 
region. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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models (Hollowed et al., 2020; Holsman et al., 2020; Cheng et al., 2021). 
In this study, we utilize a previously developed regional ocean 

biogeochemical model (Bering10K; Hermann et al., 2013, 2016; Pilcher 
et al., 2019; Kearney et al., 2020) to dynamically downscale multiple 
CMIP5 Earth System Models. These model runs are forced using 
different RCP climate change scenarios to project ocean acidification for 
the Bering Sea. These projections were produced in tandem with ACLIM 

Fig. 2. Ensemble mean change in surface temperature 
between 2091-2100 and 2011–2020 for (A) RCP 8.5 
and (B) RCP 4.5. Contour lines denote the 50, 100, 
and 200m isobaths. (C) Timeseries of ΔSST for the 
area-weighted mean shelf. The thick line in (C) rep-
resents the ensemble mean, with the thinner lines 
representing each individual ensemble member. Note 
that the ensemble mean line for RCP 4.5 ends in 2080 
due to the 2080 end date for the B10K-CESM in our 
ensemble, while the other 2 models continue to 2100. 
For the spatial plot in RCP 4.5 (B) the end time is 
2071–2080 for CESM, and 2091–2100 for the MIROC 
and GFDL models.   

Fig. 3. Timeseries for (top) surface and (bottom) bottom water area-weighted 
ΔΩarag for the Bering Sea shelf, calculated as the deviation from the 2010–2019 
average. The ensemble mean is denoted by the thick line, with the thinner lines 
representing each individual ensemble member. Note that the B10K-CESM 
simulation for RCP 4.5 ends in 2080, and the ensemble mean line also ends 
in 2080 to avoid a sudden change due to switching from 3 ensemble members 
to 2. 

Fig. 4. Same as Fig. 3 but for pH.  
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and follow a similar method to the previous biophysical projections 
(Hermann et al., 2019). The goal of these OA projections is to provide 
high spatial-temporal resolution products of changing ocean carbonate 
chemistry conditions to help inform biological sensitivity experiments 
and strategic planning for marine fishery management. 

2. Methods 

2.1. Regional model 

The regional model used for the dynamical downscaling is an 
implementation of the Regional Ocean Modeling System (ROMS; 
Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008) at 10 km 
horizontal resolution with 30 terrain-following depth layers (Fig. 1). 
This model configuration (Bering10K) simulates sea-ice formation and 
melt and contains tidal mixing. A complete description of the physical 
model can be found in Hermann et al. (2013) with updates as noted in 
Kearney et al. (2020). This physical model is coupled to a 
nutrient-phytoplankton-zooplankton (NPZ) ecosystem model, devel-
oped as part of the Bering Sea Ecosystem Study (BESTNPZ; Gibson and 
Spitz, 2011) and recently updated following Kearney et al. (2020). This 
ecosystem model contains three nutrients (nitrate, ammonium, and 
iron), two phytoplankton groups (small and large), five zooplankton 
groups (microzooplankton, small copepods, large copepods, euphau-
siids, and jellyfish), and two detrital groups (slow and fast sinking). The 
model tracks nitrogen through the different ecosystem model groups, 
which is then converted to carbon when required using a C:N molar ratio 
of 106:16. The NPZ model also contains an ice biology module with an 
ice algae, nitrate, and ammonium group, and a benthic sub-model which 
encompasses a benthic infauna group and a detrital group. The benthic 
sub-model is based on a simplified version of the European Regional Sea 
Ecosystem model (ERSEM; Ebenhöh et al., 1995), where benthic infauna 
graze on pelagic phytoplankton and detritus within 1m of the bottom, 
and also benthic detritus. Organic material that reaches the bottom is 

transferred to the benthic detrital pool, with 20% of the material 
permanently removed due to processes not represented in the model (e. 
g. burial and off-shelf transport) and an additional 1% removed due to 
denitrification (Kearney et al., 2020). 

Carbonate chemistry is simulated by adding two additional state 
variables: dissolved inorganic carbon (DIC) and total alkalinity (TA), 
which are used to calculate the entire carbonate chemistry system 
following the OCMIP-2 protocols (Orr et al., 1999) and CO2SYS (Lewis 
et al., 1998). Planktonic respiration and detrital remineralization are the 
primary DIC sources, while phytoplankton primary production is the 
primary DIC sink. DIC is also exchanged with the atmosphere according 
to the gradient in CO2 partial pressure between the surface ocean and 
atmosphere (ΔpCO2) and the wind speed following Wanninkhof (2014). 
A complete description of the model carbonate chemistry can be found 
in Pilcher et al. (2019). 

A notable addition to the model used here compared to the iteration 
described in Pilcher et al. (2019) is the incorporation of DIC and TA 
cycling in waters containing sea ice following the parameterizations of 
Mortenson et al. (2018). The purpose of the DIC and TA ice parametri-
zations is to simulate the process of brine rejection and ikaite crystal (a 
metastable phase of calcium carbonate) precipitation in sea-ice forma-
tion. As sea ice forms, dense, high DIC and TA brine is rejected and sinks 
with the brine rejected salts, leaving relatively lower DIC and TA in the 
sea ice. When this sea ice melts, the low DIC and TA dilutes the surface 
waters. Thus, the net effect is downward transport of relatively high DIC 
and TA waters in regions of ice formation, and a dilution of surface 
waters with low DIC and TA during ice melt. The formation of ikaite 
crystals in sea ice occurs following a 2:1 M ratio of TA to DIC (Geilfus 
et al., 2016; Mortenson et al., 2018). Therefore, sea-ice growth and 
ikaite formation will increase surface ocean water pCO2 (due to reducing 
the TA/DIC ratio of ocean water), while conversely ikaite dissolution 
during sea ice melt will decrease surface pCO2 (due to increasing the 
ocean water TA/DIC ratio). 

DIC fluxes associated with ice growth and melt are parameterized as: 

φDIC =
∂hIce

∂t
ΔDICeff (1)  

where ∂hIce
∂t is the change in sea ice thickness over time and ΔDICeff rep-

resents the effective difference in DIC between sea ice and water and is 
calculated as: 

ΔDICeff = DICref
SW − (DICref

ice +DICref
ikaite) (2)  

where DICref
SW is the reference concentration of DIC in seawater and is set 

to 2100 mmol C m− 3, DICref
ice is reference concentration of DIC in ice and 

is set to 400 mmol C m− 3, and DICref
ikaite is the concentration of DIC 

trapped in ice as ikaite and is set to 50 mmol C m− 3. Total alkalinity 
fluxes associated with ice growth and melt are parametrized according 
to the following similar equations: 

φTA =
∂hIce

∂t
ΔTAeff (3)  

ΔTAeff = TAref
SW − (TAref

ice +TAref
ikaite) (4)  

where TAref
SW is the reference concentration of total alkalinity in seawater 

and is set to 2200 mmol m− 3, TAref
ice is the reference TA of ice and is set to 

500 mmol m− 3, and TAref
ikaite is the concentration of TA trapped in ice as 

ikaite and is set to 100 mmol m− 3. The values for DICref
SW ,DICref

ice ,DICref
ikaite,

TAref
SW,TAref

ice , TAref
ikaite are the same as those chosen by Mortenson et al. 

(2018) based on limited observational data of these values in Arctic sea 
ice. These values are kept constant to ensure mass conservation (Mor-
tenson et al., 2018). The reference values for DIC and TA (DICref

SW and 
TAref

SW) are reflective of annual mean surface values observed for the 

Fig. 5. Ensemble mean surface Ωarag values for the area-weighted shelf (top) 
RCP 8.5 and (bottom) RCP 4.5 scenarios. The white contour denotes the Ωarag 
= 1 line. 
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Bering Sea. Implementation of this mechanism did not significantly 
change model skill metrics for DIC and TA based on comparisons with 
observational data, though the available data are temporally biased to 
ice-free summer months when this mechanism is not active. 

2.2. CMIP5 models 

Following Hermann et al., 2019, we dynamically downscale three 
CMIP5 models: GFDL-ESM2M (Dunne et al., 2013), MIROC-ESM 
(Watanabe et al., 2011), and the CESM (Kay et al., 2015). These three 
models were chosen in part due to their good performance in simulating 
present conditions the Bering Sea, the accessibility of the required at-
mospheric forcing variables, and because variability in future projected 
air temperature over the Bering Sea in these 3 models encompasses 
~80% of the variability of the CMIP5 ensemble, with the CESM falling 
closest to the CMIP5 ensemble mean (Hermann et al., 2019). 

The regional downscaling uses atmospheric forcing (air temperature, 
specific humidity, shortwave and longwave radiation, u and v winds, 
and precipitation) from the CMIP5 model at daily (MIROC, CESM) or 6 
hourly (GFDL) resolution. Output from the CMIP5 model is also used to 
derive the horizontal boundary conditions for physical variables (u, v 
velocities, temperature, salinity), and DIC and TA. Nutrient boundary 
conditions (NO3 and iron) are kept at present climatological values to 
limit additional sources of uncertainty that may be generated due to 
inheriting ESM bias and drift, and to focus on the carbonate chemistry 
changes driven by surface forcing (i.e. atmospheric CO2) as opposed to 
indirect biologically-driven changes from the lateral boundary condi-
tions. The horizontal boundary conditions for the ecological groups (e.g. 
phytoplankton, zooplankton biomass) are kept at constant, very small 
seed-population levels (i.e. 1 mmolC m− 3). Boundary conditions are at 

monthly resolution for the physical and nutrient variables and yearly 
resolution for DIC and TA for GFDL and MIROC (based on output 
availability), but monthly for CESM. Atmospheric CO2 follows mean 
annual values described by the respective Representative Concentration 
Pathway (RCP; Meinshausen et al., 2011). 

Each model run is started in 2006 using initial conditions from a 
long-term Bering10K hindcast (Pilcher et al., 2019). The model is then 
continuously run forward in time from 2006 to 2100 using the atmo-
spheric forcing and horizontal boundary conditions from the ESM and 
RCP scenario. An exception is the CESM RCP 4.5 run which ended in 
2080. Weekly-averaged output data were archived from each simula-
tion. We omit the first 4 years of each simulation as model spin-up, and 
therefore report all results over the 2010–2100 timeframe. Previous 
work has illustrated that this timeframe is sufficient for the Bering Sea 
shelf carbonate system to adjust to new input and/or boundary condi-
tions (Pilcher et al., 2019; H. Wang personal communication), largely 
due to the relatively short residence time of 1–2 years. Each simulation 
uses the same climatological river runoff forcing, compiled from river 
gauge data in Alaska and Russia (Kearney, 2019). This river runoff 
contains seasonally-varying concentrations of DIC and TA following 
data collected at Pilot Station at the mouth of the Yukon River in Alaska 
(Striegl et al., 2007; PARTNERS, 2010). While it is likely that the sea-
sonality, magnitude, and biogeochemistry of this runoff will change over 
the 21st Century due to climate change (Tank et al., 2012; Brown et al., 
2019; Terhaar et al., 2019), the exact nature of these changes remains 
uncertain. Therefore, we use the climatological estimates as a first-order 
approach. 

Fig. 6. Seasonal cycle plots for the ensemble mean, area-weighted shelf for (A) Ωarag, (B) pH, and (C) pCO2 for RCP 8.5. The blue, black, and red lines denote the 
2015–2025 seasonal maximum, mean, and minimum values. The corresponding color arrows illustrate the change in these values for the later 2045–2055 and 
2090–2100 timeframes. The yellow line denotes the new seasonal mean for the respective timeframe. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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2.3. Model analysis 

All model output is regridded from the native ROMS curvilinear 
coordinate system (182 × 258 × 30) to a standard latitude-longitude 
grid at set depth intervals (161 × 251 × 29) using a linear nearest 
neighbor technique. The depth levels are 5 m thickness each for the 
upper 20 m, then gradually increase in thickness to a maximum of 250 m 
for depths below 1000 m. The regridding process has a negligible effect 
on shelf wide trend values, and is conducted to facilitate analysis and 
figure visualization. Model values of Ωarag and pH are calculated from 
model temperature, salinity, DIC, and TA with CO2SYS and the carbonic 
acid dissociation coefficients of Mehrbach et al. (1973), refit by Dickson 
and Millero (1987). To distinguish between geochemical changes and 
the effects of freshwater, we calculate salinity-normalized trends in TA 
and DIC using the average salinity at each grid cell over 2011–2020, for 
each respective model simulation. To illustrate spatial changes in model 
carbonate chemistry variables, we show the difference between a “pre-
sent” timeframe defined as 2011–2020 and an end of the century 
timeframe defined as 2091–2100, except for the CESM 4.5 downscaling 
which uses an end timeframe of 2071–2080 due to the 2080 end date. 
We elect to use 10-year averages as opposed to a multi-decadal average 
to avoid diminishing the magnitude of the total change. Our 
multi-model ensemble approach lessens the impact of interannual 
climate variability, and indeed the spatial pattern is unchanged when 
using a 15- or 20-year average. Furthermore, trends in surface carbonate 
variables are detectable relatively quickly compared to other ocean 
variables, with previous modeling studies suggesting a time of emer-
gence of 5–15 years for anthropogenic trends in pH and Ωarag 

(Schlunegger et al., 2019). 

3. Results 

Dynamically downscaled projections of sea surface temperature 
illustrate substantial warming throughout the Bering Sea shelf, with 
notable differences between the two RCP scenarios (Fig. 2). Both sce-
narios produce similar temperature changes up through 2050, at which 
point they diverge with the RCP 8.5 scenario nearing an annual mean 
ΔSST of 2.8–6.3 ◦C by 2100 compared to 0.3–3.0 ◦C under RCP 4.5. The 
MIROC and CESM under RCP 8.5 are distinguishable from the RCP 4.5 
simulations, though the colder GFDL RCP 8.5 simulation is not. This 
warming is spatially heterogenous, with the greatest increase in SST 
occurring along the middle shelf domain just north of St. Matthew Island 
under RCP 8.5. The inter-model spread in SST projections closely follows 
the spread in projected air temperature changes, with the MIROC model 
warming the most, GFDL model warming the least, and the CESM 
approximately following the ensemble mean of all three models. 

Ensemble mean annual surface (Fig. 3a) and bottom (Fig. 3b) ΔΩarag 
spatially averaged over the Bering Sea shelf decreases for both RCP 
scenarios over the 21st Century. This decrease is greater under RCP 8.5 
compared to RCP 4.5, and is also greater at the surface compared to the 
bottom. Annual average Ωarag for the Bering Sea shelf decreases by 
0.63–0.86 by the end of the century under RCP 8.5, and by 0.18–0.43 
under RCP 4.5. Bottom water Ωarag decrease by 0.28–0.46 for RCP 8.5 
and 0.11–0.27 for RCP 4.5. The range in ensemble members is ~0.2 at 
the surface and 0.1–0.2 at the bottom. Despite this spread, the surface 
ensemble members are clearly distinguishable between the two RCP 

Fig. 7. Spatial plots of ensemble mean surface Ωarag for the 2011–2020 timeframe, the 2091–2100 timeframe, and difference between the two. Left column figures 
are RCP 8.5 and right are RCP 4.5. The thin black contour lines denote the 50, 100, and 200 m isobaths. Note that the projected end timeframe for B10K-CESM in RCP 
4.5 is 2071–2080 (Supplementary Fig. S3). 
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scenarios by the end of the century, whereas at the bottom, they still 
overlap by the end of the century. As with ΔSST, the two scenarios are 
similar until 2050 when the RCP 4.5 scenario begins to stabilize while 
the RCP 8.5 values continue to decrease until 2100. Surface and bottom 
ΔpH (Fig. 4) also decrease under both RCP scenarios, with greater 
magnitude changes at the surface and under RCP 8.5, similar to the 
projected changes in ΔΩarag. Surface pH decreases by 0.31–0.35 by the 
end of the century under RCP 8.5, and by 0.07–0.13 under RCP 4.5. The 
decrease in pH for bottom waters is generally lower but more variable 
than at the surface, with a decline of 0.18–0.30 for RCP 8.5 and 
0.05–0.16 for RCP 4.5. One distinction with ΔpH is that the model 
spread is smaller compared to the spread in ΔΩarag, due in part to the log 
scale of pH (e.g. the model spread in [H+] is comparatively greater, as 
also demonstrated in Fassbender et al. (2021). The model spread in ΔpH 
(or [H+]) does not overlap between the RCP scenarios at the surface and 
the bottom by the latter part of the 21st Century. 

Model surface Ωarag on the Bering Sea shelf displays a large magni-
tude seasonal cycle, with relatively low Ωarag values during winter 
(December–March), followed by much greater values in summer and 
early fall (June–September, Fig. 5). Surface Ωarag values < 1 begin to 
regularly occur from January–March between 2015 and 2030 under 
both RCP scenarios. These water conditions of Ωarag < 1 remain rela-
tively confined to January–March under RCP 4.5, but have a consis-
tently earlier onset in the RCP 8.5 scenario, to the effect that they occur 
from mid-October to mid-March by the end of the century, comprising 5 
months of the year. Furthermore, the degree of winter Ωarag under-
saturation deepens under RCP 8.5. Despite these extremely low values 
by the end of the century, Ωarag consistently rebounds to values above 1 
by early April. The timing of this transition from winter undersaturation 

to summer saturation remains relatively unchanged throughout the 
entire 21st Century and under both RCP scenarios. Thus, the increase in 
duration of undersaturated waters in RCP 8.5 is predominately driven by 
the earlier onset of these conditions. 

While the timing of the transition from winter undersaturated to 
spring-summer supersaturated (Ωarag > 1) conditions remains relatively 
unchanged in the model projections, the seasonal rebound in summer 
Ωarag is substantially reduced in RCP 8.5. Fig. 6a illustrates that summer 
ensemble mean maximum Ωarag values are 0.96 lower by 2100, 
compared to reductions of 0.69 and 0.37 in the seasonal mean and 
minimum conditions, respectively. These changes result in a reduced 
seasonal amplitude and an overall compression of the seasonal cycle. By 
2100, summer maximum Ωarag is, on average, slightly lower than the 
seasonal mean from 2015 to 2025. Furthermore, the seasonal mean by 
2100 is approaching the minimum Ωarag values from 2015 to 2025. 
These seasonal changes are also apparent for surface pH (Fig. 6b), 
though for pH the seasonal mean by 2100 is lower than the minimum 
values simulated in 2015–2025. However, these changes to the mini-
mum, maximum, and mean are more uniform for pH than for Ωarag. This 
results in a pH seasonal amplitude that remains relatively unchanged, 
compared to the reduced seasonal amplitude for Ωarag. Surface pCO2 
increases substantially by the end of the century, highlighted by a 545 
μatm increase in the seasonal max (Fig. 6c). A comparatively smaller 
increase in the seasonal minimum (239 μatm) results in a nearly 
doubling of the seasonal amplitude. Overall, the seasonal cycle com-
presses for Ωarag, expands for pCO2, and is roughly unchanged for pH. 

Spatially, the projected changes in surface Ωarag are heterogenous 
throughout the Bering Sea shelf, particularly for the RCP 8.5 scenario 
(Fig. 7). Surface Ωarag decreases by 0.5–0.75 throughout much of the 

Fig. 8. Same as previous figure, except for surface pH. The thin black contour lines denote the 50, 100, and 200 m isobaths.  
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northern Bering Sea and inner shelf domain, while the outer shelf 
domain and southeastern shelf decrease by 0.75–1.25. The regions of 
greatest Ωarag decrease occur near the shelf break and the Aleutian 
Islands near Unimak Pass. Similar spatial patterns are also apparent in 
RCP 4.5, though the magnitudes are lower. A similar spatial pattern of 
relatively greater changes on the outer shelf domain is also apparent for 
surface pH (Fig. 8). These regions of greatest Ωarag and pH decrease also 
tend to be regions with relatively higher values during the initial 
2011–2020 timeframe. Spatial maps for each individual ensemble 
member are shown in the supplementary material. 

Bottom water Ωarag values start the 2011–2020 timeframe already 
near or below 1 for most of the outer and middle shelf, while the inner 
shelf remains above 1. Because the inner shelf is very shallow (less than 
50 m), most of this region consists of a single mixed layer. Thus, surface 
and bottom water Ωarag are comparable for the inner shelf. Conversely, 
middle and outer shelf Ωarag bottom water values are substantially lower 
than surface waters, particularly in the northwest Bering Sea shelf and 
the Gulf of Anadyr. By the end of the 21st century under RCP 8.5, bottom 
water Ωarag has greatly decreased on the Bering Sea shelf, with middle 
and outer shelf water far below 1 and inner shelf water near 1. This 
decrease in Ωarag is more muted in the RCP 4.5 scenario, with most of the 
middle and outer shelf waters experiencing a very slight decrease in 
Ωarag. 

3.1. Comparison to ESM output 

Modeled linear trends over the full model timeframe in annually 
averaged values for waters on the Bering Sea shelf extracted from both 
the coarse resolution and the downscaled versions of the three ESMs 
highlight key similarities and differences between the two model reso-
lutions and RCP scenarios (Table 1). Trends in many surface carbonate 
variables (i.e. sDIC, pCO2, pH, and Ωarag) are stronger under RCP 8.5 
compared to RCP 4.5, and are comparable between the ESMs and the 
downscaled projections. Increasing temperature and decreasing salinity 
trends are greater in magnitude under RCP 8.5, though scenario differ-
ences are generally not distinguishable from the ensemble uncertainty. 
Temperature trends at the surface are nearly identical between the 
downscaled simulations and the default ESM output, with similar 
magnitudes of ensemble spread. Differences between the trends in DIC 
and TA compared to the salinity-normalized sDIC and sTA highlight the 
role of freshening, particularly in the ESMs which display a much greater 
spread in DIC and TA trends compared to sDIC and sTA, respectively. 
This is also consistent with stronger decreasing salinity trends in the 
ESMs compared to the downscaled projections, though the models are 
not statistically distinguishable. Overall, trends at the bottom are 
slightly dampened compared to trends at the surface, with comparable 
magnitudes of ensemble spread, except for bottom Ωarag in the ESMs. 

For bottom waters, we further separate trends into the three shelf 
domains (i.e. inner, middle, outer) to highlight the utility of the higher 
resolution downscaled simulations. For example, in the downscaled 
simulations, inner shelf bottom water trends are similar to the respective 
surface trends due to the shallow depth of the inner shelf. However, this 
is not always the case for the coarser ESMs, with inner shelf bottom 
water trends that are significantly different than the surface trends for 
Ωarag and pH for RCP 8.5. Conversely, bottom water trends under RCP 
8.5 on the relatively deeper outer shelf for carbonate variables are often 
significantly different than the surface in the downscaled simulations (e. 
g. sDIC, pCO2, Ωarag, and pH), though this is not true for pCO2 with the 
ESMs. Though not statistically distinguishable, the ESMs produce the 
strongest bottom pCO2 trend for the middle shelf, while the downscaled 
projections have the strongest magnitude bottom water trend on the 
outer shelf. There is also a much greater spread in bottom water Ωarag 
trends compared to the surface for the ESMs, however the spread be-
tween the surface and bottom trends is similar for the downscaled 
projections. 

Although the linear trends in surface carbonate chemistry variables 

Table 1 
Linear trends from 2010 to 2100 in area-weighted mean shelf surface and bot-
tom variables for the ESM output and the Bering10K downscaled simulations 
under RCP 8.5 and 4.5 scenarios. Surface values are for the entire shelf, whereas 
bottom values are divided between the inner (1st row), middle (2nd row), and 
outer (3rd row) shelf domains. Trend values represent the ensemble mean trend, 
with the ± signifying the standard deviation.   

ESM 8.5 Bering10K 
8.5 

ESM 4.5 Bering10K 
4.5 

Surface Variables 
Temperature (◦C 

yr− 1) 
0.055 ±
0.020 

0.053 ±
0.021 

0.018 ±
0.014 

0.018 ±
0.014 

Salinity (mmol 
m− 3 yr− 1) 

− 0.012 ±
0.007 

− 0.006 ±
0.002 

− 0.006 ±
0.003 

− 0.003 ±
0.002 

DIC (mmol m− 3 

yr− 1) 
0.429 ±
0.446 

0.809 ±
0.282 

0.176 ±
0.230 

0.376 ±
0.172 

TA (mmol m− 3 

yr− 1) 
− 0.770 ±
0.502 

− 0.398 ±
0.174 

− 0.372 ±
0.245 

− 0.140 ±
0.087 

sDIC (mmol m− 3 

yr− 1) 
1.24 ± 0.15 1.19 ± 0.24 0.56 ± 0.08 0.57 ± 0.09 

sTA (mmol m− 3 

yr− 1) 
0.06 ± 0.08 − 0.00 ±

0.22 
0.02 ± 0.06 0.06 ± 0.09 

pCO2 (μatm 
yr− 1) 

6.18 ± 0.33 5.75 ± 0.13 1.91 ± 0.14 1.75 ± 0.09 

Ωarag (yr− 1) − 0.0086 ±
0.0009 

− 0.0097 ±
0.0015 

− 0.0043 ±
0.0004 

− 0.0044 ±
0.0011 

pH (yr− 1) − 0.0045 ±
0.0003 

− 0.0040 ±
0.0002 

− 0.0018 ±
0.0001 

− 0.0015 ±
0.0001  

Bottom Variables 
Temperature (◦C 

yr− 1) 
0.053 ±
0.020 
0.053 ±
0.020 
0.037 ±
0.010 

0.048 ±
0.021 
0.048 ±
0.016 
0.034 ±
0.009 

0.015 ±
0.013 
0.017 ±
0.013 
0.014 ±
0.009 

0.013 ±
0.011 
0.012 ±
0.010 
0.011 ±
0.006 

Salinity (mmol 
m− 3 yr− 1) 

− 0.012 ±
0.005 
− 0.008 ±
0.003 
− 0.001 ±
0.002 

− 0.014 ±
0.006 
− 0.007 ±
0.002 
− 0.003 ±
0.001 

− 0.006 ±
0.002 
− 0.004 ±
0.002 
− 0.001 ±
0.001 

− 0.006 ±
0.005 
− 0.004 ±
0.002 
− 0.002 ±
0.0005 

DIC (mmol m− 3 

yr− 1) 
0.29 ± 0.41 
0.57 ± 0.27 
0.82 ± 0.13 

0.36 ± 0.27 
0.13 ± 0.40 
0.46 ± 0.23 

0.13 ± 0.23 
0.26 ± 0.14 
0.38 ± 0.09 

0.23 ± 0.20 
0.12 ± 0.31 
0.24 ± 0.14 

TA (mmol m− 3 

yr− 1) 
− 0.79 ±
0.36 
− 0.48 ±
0.24 
− 0.004 ±
0.07 

− 0.51 ±
0.18 
− 0.45 ±
0.16 
− 0.20 ±
0.08 

− 0.38 ±
0.20 
− 0.25 ±
0.14 
− 0.05 ±
0.02 

− 0.20 ±
0.12 
− 0.17 ±
0.10 
− 0.07 ±
0.05 

sDIC (mmol m− 3 

yr− 1) 
1.13 ± 0.24 
1.11 ± 0.24 
0.86 ± 0.17 

1.33 ± 0.33 
0.61 ± 0.31 
0.68 ± 0.20 

0.52 ± 0.13 
0.24 ± 0.11 
0.45 ± 0.10 

0.66 ± 0.17 
0.39 ± 0.26 
0.36 ± 0.11 

sTA (mmol m− 3 

yr− 1) 
0.06 ± 0.07 
0.06 ± 0.07 
0.04 ± 0.04 

0.48 ± 0.35 
0.03 ± 0.07 
0.01 ± 0.05 

0.30 ± 0.05 
0.07 ± 0.05 
0.01 ± 0.03 

0.24 ± 0.23 
0.09 ± 0.03 
0.05 ± 0.04 

pCO2 (μatm 
yr− 1) 

7.01 ± 0.50 
8.24 ± 1.31 
6.60 ± 1.48 

5.87 ± 0.11 
6.59 ± 1.97 
7.82 ± 0.96 

2.21 ± 0.20 
2.85 ± 0.79 
2.63 ± 0.67 

2.07 ± 0.28 
2.31 ± 1.98 
2.83 ± 0.31 

Ωarag (yr− 1) − 0.0028 ±
0.0039 
− 0.0026 ±
0.0037 
− 0.0018 ±
0.0026 

− 0.0060 ±
0.0007 
− 0.0031 ±
0.0011 
− 0.0032 ±
0.0010 

− 0.0015 ±
0.0021 
− 0.0014 ±
0.0020 
− 0.0013 ±
0.0018 

− 0.0032 ±
0.0006 
− 0.0017 ±
0.0011 
− 0.0017 ±
0.0006 

pH (yr− 1) − 0.0043 ±
0.0004 
− 0.0042 ±
0.0005 
− 0.0032 ±
0.0003 

− 0.0032 ±
0.0001 
− 0.0026 ±
0.0007 
− 0.0027 ±
0.0004 

− 0.0017 ±
0.0001 
− 0.0018 ±
0.0002 
− 0.0015 ±
0.0002 

− 0.0013 ±
0.0002 
− 0.0011 ±
0.0007 
− 0.0012 ±
0.0002  
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are similar between the ESMs and the downscaled simulations, this is not 
the case for the actual values due to initial value differences (Figs. 10 
and 11). The downscaled simulations generally suggest surface Ωarag 
values that are greater overall compared to the ESMs (though the coarse 
MIROC and downscaled CESM are initially nearly identical), particu-
larly for the downscaled MIROC simulation (Fig. 10a). This large dif-
ference between the coarse and downscaled MIROC simulations is 
driven by greater total alkalinity (TA) in the downscaled simulation 
(Fig. 10c, S1-2). The greater TA values in the Bering10K generate a 
relatively greater TA/DIC ratio (Fig. S12), which shifts the carbonate 
system to a comparatively more buffered state, resulting in greater 
values of Ωarag and pH. Conversely, the higher Ωarag for the downscaled 
GFDL compared to the coarse version is driven by lower DIC (Fig. 10b). 
The model spread for Ωarag is substantially greater for the downscaled 
results compared to the coarse simulations. However, the spread in DIC 
is greater in the coarse resolutions, while the spread in TA is slightly 
greater in the downscaled simulations. Overall, the model spread tends 
to align between the coarse and downscaled simulations (i.e. CESM TA 
and DIC are the lowest of the three models for both the coarse and 
downscaled resolutions), though MIROC TA is a notable exception. 

Fig. 11 shows the spatial patterns in surface Ωarag under RCP 8.5 
between the downscaled simulations and the ESM ensemble mean, re- 
gridded to the Bering10K grid. Fig. 11 illustrates greater spatial het-
erogeneity in the downscaled simulations and overall greater values of 
Ωarag, which is strongly driven by the B10K-MIROC simulation as illus-
trated in Fig. 10a. The ESM output depicts a latitudinal pattern of 
decreasing Ωarag poleward (i.e. towards Bering Strait), which is not 
readily apparent in the Bering10K results. Rather, Bering10K simulates 
greater Ωarag in nearshore environments (except for waters located near 

the Yukon River) and also on the outer Bering Sea shelf and the shelf 
break. Furthermore, the decrease in Ωarag in Bering10K is strongest 
along the southeastern Bering Sea shelf and the Aleutian Islands, a 
pattern that is not produced by the ESMs. 

4. Discussion 

This study provides the first dynamically downscaled projections of 
carbonate chemistry variables for the Bering Sea. The downscaled re-
sults project substantial changes in surface and bottom water chemistry 
variables, with greater magnitude changes in the RCP 8.5 scenario 
compared to RCP 4.5. Annual average Ωarag for the Bering Sea shelf 
decreases by 0.63–0.86 by the end of the century under RCP 8.5, and by 
0.18–0.43 under RCP 4.5. Similarly, surface pH decreases by 0.31–0.35 
by the end of the century under RCP 8.5, and by 0.07–0.13 under RCP 
4.5. Changes in bottom waters are more muted than at the surface, with 
a Ωarag decrease of 0.28–0.46 for RCP 8.5 and 0.11–0.27 for RCP 4.5, 
along with pH declines of 0.18–0.30 for RCP 8.5 and 0.05–0.16 for RCP 
4.5. However, bottom waters are already naturally more acidic than 
surface waters, illustrated by lower overall Ωarag and pH at the start of 
our model simulations (Figs. 7–9). Thus, annual average bottom water 
Ωarag for the Bering Sea shelf is near 1 at the start of our model simu-
lations, and is consistently below 1 for all model simulations under RCP 
8.5 by the latter half of the 21st Century. In comparison, surface Ωarag 
remains above 1 throughout the 21st Century for most of our model 
simulations, though Ωarag does drop below 1 by the end of the century 
for our GFDL and CESM downscaled runs (Fig. S13). Previous work 
using output from the global-scale CESM projected annual surface 
aragonite undersaturation by 2062 for the Bering Sea under RCP 8.5 

Fig. 9. Same as previous figure except for bottom water Ωarag. The thin black contour lines denote the 50, 100, and 200 m isobaths.  
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(Mathis et al., 2015a). The CESM is the most acidic member of our 
downscaled model projections, and suggests an earlier (relative to our 
other two downscaled simulations) timeframe of 2090–2100 for annual 
Ωarag < 1 under RCP 8.5. These results highlight the importance of 
utilizing an ensemble of models to quantify uncertainty due to model 
structural differences. 

Although annual surface Ωarag mostly remains above 1 in our 
downscaled projections, undersaturated conditions do evolve regularly 
on seasonal timeframes (Fig. 5). In fact, the annual average is not 
representative of typical water conditions due to the high seasonality in 
the surface carbonate system. For example, the annual average of ~1.9 
in 2010 (Fig. S13) is a transient solution that is passed in May and 
October during timeframes of rapidly increasing and decreasing Ωarag, 
respectively (Fig. 5). Instead, the majority of the year is divided into 
consistently undersaturated conditions in ice-covered winter months, 
and well-buffered, supersaturated conditions in late spring through 
early fall associated with phytoplankton productivity (Pilcher et al., 
2019). This dynamic continues throughout the entire simulated time-
frame, though the summer peak is diminished to a relatively greater 
extent (Fig. 6). A notable effect of ocean acidification in the RCP 8.5 
scenario is the earlier onset and strengthening of winter undersaturated 
conditions, which does not occur to the same extent in the RCP 4.5 
scenario. The increase in undersaturated conditions from approximately 
2 months per year in 2010 to 5 months per year in 2100 under RCP 8.5 
further underscores the importance of examining seasonal values rather 
than the annual mean. 

Resolving the seasonal changes in carbonate variables is also 
important for projecting the impacts to marine organisms and ecosys-
tems, which experience the full range of water conditions as opposed to 
just the annual average. Previous work has highlighted that the seasonal 

amplitude of carbonate chemistry variables responds differently to 
increasing ocean carbon uptake and ocean acidification (Sasse et al., 
2015; Fassbender et al., 2018; Kwiatkowski and Orr, 2018). This can 
lead to an increase in the seasonal amplitude of pCO2 (Gallego et al., 
2018), but a decrease for pH and Ωarag (Sasse et al., 2015; Kwiatkowski 
and Orr, 2018). Our downscaled results also show an increase in the 
seasonal amplitude of pCO2 and a decrease in the amplitude of Ωarag, 
though our simulated pH amplitude did not change. These results 
indicate that organisms more sensitive to pCO2 will experience a much 
greater range in conditions with continued ocean acidification, 
compared to organisms that are more sensitive to pH or Ωarag. 

The projected expansion of relatively more acidic waters can also be 
conceptualized as a shrinking of the suitable habitat for species that are 
negatively impacted by decreasing pH or Ωarag (Evans et al., 2019). 
Fig. 12 illustrates these shrinking optimal habitat conditions at the 
surface and bottom with regard to particular threshold values of Ωarag 
and pH for the Bering Sea shelf. The pH threshold values were picked 
based on previous studies that found negative impacts to red king and 
tanner crab condition index and survival, particularly for red king crab 
at pH 7.5 (Long et al., 2013a). Water conditions of pH > 7.8 at the 
surface occur year-round initially, but begin to erode by 2030 and 
steadily decrease, composing less than 50% of the year by 2100 under 
RCP 8.5. Water conditions with pH > 7.5 occur year-round until the 
latter half of the 21st Century, decreasing to ~60% of the year by 2100. 
The Long et al. (2013a) experiments observed significant red king crab 
mortality at pH levels of 7.5, including 100% mortality after 95 days of 
exposure. The finer spatial resolution of the downscaling also allows for 
constraining spatial regions of interest, such as the Bristol Bay red king 
crab fisheries management area (Fig. 13). The patterns are similar to 
those for the broader shelf, though the erosion of pH > 7.8 conditions 

Fig. 10. Timeseries for area-weighted average shelf (A) Ωarag, (B) dissolved inorganic carbon, and (C) total alkalinity for the individual ESM (dashed line) and the 
respective downscaled simulation (thick line). 
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starts later. 
An advantage of the downscaled simulations compared to global- 

scale ESM output is the capacity to spatially resolve regional hotspots. 
Our downscaled results identify the outer shelf domain and shelf break, 
along with the southeastern shelf near the Aleutian Islands and Unimak 
Pass as OA hotspots. Because these areas are also relatively high in pH 
and Ωarag during the 2011–2020 timeframe, the greater rate of change 
diminishes spatial heterogeneity over the shelf. The large changes in the 
southeastern shelf region are consistent with our previous model hind-
cast analysis, which also identified this area as a hotspot for changes in 
carbonate chemistry due to temperature shifts (Pilcher et al., 2019). This 
region is highly dynamic as it serves as the conduit between the Gulf of 
Alaska and the Bering Sea, with strong current speeds through Unimak 
Pass associated with the Alaska Coastal Current (Stabeno et al., 2002). 
Unimak Pass is relatively narrow (~16 km) and is comprised of only 
several grid cells in our regional model. It is therefore possible that the 
spatial resolution is insufficient to fully capture the dynamics, though 
relatively strong climatological current speeds of 20 cm s− 1 are simu-
lated with the Bering10K (Hermann et al., 2013), which are slightly 
faster than the 12.4–17.0 cm s− 1observed speeds (Stabeno et al., 2002). 

Linear trends in surface temperature, sDIC, sTA, Ωarag, and pH are 
consistent between the Earth System Model and Bering10K projections 
for the Bering Sea shelf, with the mean trends often indistinguishable 
between the two model resolutions considering the model spread 
(Table 1). A notable exception is surface salinity, with the ESMs pro-
jecting a freshening trend two times greater in magnitude (though still 
statistically indistinguishable) than projected by Bering10K. This dif-
ference may be partly attributable to Bering10K maintaining a constant 

magnitude and seasonality for freshwater river runoff in this suite of 
simulations, whereas the ESMs generally contain land model compo-
nents that include changes in the hydrologic cycle. Indeed, freshwater 
runoff in the Pan-Arctic is projected to increase with warmer tempera-
tures (Rawlins et al., 2010). Thus, while our downscaled projections will 
incorporate precipitation and evaporation changes from the ESM along 
with boundary changes in salinity, changes in freshwater runoff are not 
included. In addition, our projections included a mild (but not negli-
gible) nudging of sea surface salinity to a present-day climatology, 
which guards against salinity drift, but slightly dampens future changes 
to the large-scale mean (scaling arguments based on flushing times 
indicate this should not significantly impact any changes to spatial 
gradients in salinity which result from changes in ice cover). Bottom 
water trends are also similar between the ESM and downscaled simu-
lations, though the spread in carbonate variables tends to be lower for 
the downscaled simulations. This leads to more clearly distinguishable 
trends in bottom water Ωarag for the different shelf domains in the 
downscaled simulations, but not for the ESMs. 

The similarities between the global ESM and Bering10K mean trends 
in surface and bottom water variables is noteworthy because previous 
studies have suggested that downscaling with regional models produces 
greater magnitude changes in coastal shelf waters (Dussin et al., 2019; 
Siedlecki et al., 2021). The relatively large spatial extent of the Bering 
Sea shelf could be one possibility, as this will increase the number of 
ESM grid cells comprising the shelf, compared to other systems like the 
California Current. The goal of this comparison is to determine the 
additional information gained through the computationally expensive 
process of dynamical downscaling. Comparable trends in carbonate 

Fig. 11. Same as Figs. 7–9 for surface Ωarag except the left column is now the ESM ensemble average and the right column is the Bering10K downscaled 
ensemble average. 
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variables between the ESMs and Bering10K is also somewhat surprising 
considering significant differences in the TA/DIC ratio, which affects the 
ocean capacity to absorb atmospheric CO2 (i.e. the Revelle factor). 
Furthermore, there are substantial (e.g. > 100 mmol m− 3) differences in 
the TA and DIC concentrations between the ESMs themselves, though 
the differences tend to co-vary, leading to roughly similar TA/DIC ratios 
(Fig. S12). However, these results are consistent with previous studies 
that found the specific emissions scenario is the dominant source of 
uncertainty for projecting OA rates on multi-decadal timeframes 
(Rodgers et al., 2015; Frölicher et al., 2016). 

The most striking difference between our downscaled results and the 
ESM output is both the more buffered conditions of our downscaled 
results and the greater model spread (Fig. 10). Both the magnitude and 
spatial pattern of Ωarag in the Bering10K compare more favorably to an 
observed climatology (GLODAPv2; Key et al., 2015; Lauvset et al., 2016) 
than the ESM output (Fig. S14). Though, we note that the observational 
data used to generate the climatology for this area are relatively limited. 
The greater model spread in the Bering10K downscaling compared to 
the ESMs is unexpected, given that our downscaled results are all using 
the same physical-biogeochemical model, whereas the ESMs are all 
using different model components. As previously noted, the DIC and TA 
model spread is comparable overall between the ESMs and our down-
scaled results (slightly greater for TA in our downscaled simulations, but 
slightly less for DIC), yet this spread collapses for Ωarag and pH with the 
ESMs. The low model spread in the ESMs may be coincidental given the 
limited 3-member ensemble. These models were selected because they 
were a good representation of the CMIP5 model spread in atmospheric 
temperature, but this does not mean they will be similarly representative 
of the spread in carbonate chemistry. For example, the model spread in 
surface Ωarag for the Canadian Arctic in the six CMIP5 models utilized by 
Steiner et al. (2014) is much greater than the spread in our 

three-member ESM ensemble (~0.4 vs. 0.15 respectively). Nonetheless, 
a full comparison will require analyzing substantially more CMIP5 
models, which is beyond the scope of this manuscript and is left for 
future work. 

The inclusion of the DIC and TA cycling in sea ice was not a sub-
stantial driver of changes in carbonate chemistry for our model pro-
jections. This is partly because this mechanism has counterbalancing 
effects on annual timeframes, due to the increase in surface DIC and TA 
during winter ice formation, but subsequent decrease during spring sea- 
ice retreat (Fig. S15). Declining seasonal sea ice extent for the Bering Sea 
with future warming further diminishes the magnitude of this process. 
Mortenson et al. (2018) also did not find the inclusion of ikaite for-
mation/dissolution to have a substantial impact on annual carbon up-
take, however, they noted that the results are sensitive to the 
concentration of DIC and TA in ikaite due to the 2:1 ratio between TA 
and DIC. For example, an ikaite composition of 100 mmol m− 3 TA and 
50 mmol m− 3 DIC generates a 50 mmol m− 3 disequilibrium, but a 
composition of 1000 mmol m− 3 TA and 500 mmol m− 3 DIC generates a 
500 mmol m− 3 disequilibrium, resulting in a much larger impact on 
ocean carbon uptake (Mortenson et al., 2018). Further constraining 
these concentration values will help resolve the relative impact of this 
mechanism. 

As noted earlier, one limitation of our downscaled projections is that 
freshwater river runoff is kept at a magnitude and seasonality repre-
sentative of current conditions. With climate change, the magnitude of 
this runoff is expected to increase (Rawlins et al., 2010). Furthermore, 
the DIC and TA concentrations of this runoff may also change due to 
increased mobilization of organic matter from permafrost thawing 
(Terhaar et al., 2019). These changes will likely impact surface car-
bonate chemistry on the Bering Sea shelf, particularly in the inner shelf 
domain. This study also focused exclusively on ocean acidification, 

Fig. 12. Percent of the year when waters on the Bering Sea shelf are above the defined threshold values for the surface and bottom under both RCP scenarios.  
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however, other marine stressors such as rising temperature, deoxygen-
ation, and declining productivity are also projected for the Bering Sea 
(Bopp et al., 2013; Kwiatkowski et al., 2020). Therefore, incorporating 
all of these processes is required in order to provide a multi-stressor 
perspective for future changes to the Bering Sea ecosystem and marine 
fisheries. 

5. Conclusion 

Our dynamically downscaled simulations project that Ωarag and pH 
will steadily decrease over the 21st Century due to continued ocean 
acidification. Surface Ωarag decreases by 0.63–0.86 under RCP 8.5 and 
0.18–0.43 under RCP 4.5, while bottom Ωarag decreases by 0.28–0.46 
under RCP 8.5 and 0.11–0.27 under RCP 4.5. Although annual surface 
Ωarag on the Bering Sea shelf remains above 1 for most of the century 
under either RCP scenario, undersaturated conditions occur for ~5 
months of the year by 2100 under the RCP 8.5 scenario. Seasonally 
undersaturated conditions also develop under RCP 4.5, but are limited 
to 2–3 months per year. Spatially, the greatest rates of surface pH and 
Ωarag decline occur in the southeastern Bering Sea near Unimak Pass, 
and along the outer shelf domain near the shelf break. Linear trends in 
surface carbonate variables are comparable between the Earth System 
Model output and our downscaled simulations. However, bottom water 
carbonate trends differ for some variables between the two model res-
olutions, with the higher resolution downscaled model runs more 
consistently differentiating the Bering Sea shelf domain regions. While 
the acidification rates are comparable, we find a significant difference 
between the initial carbonate chemistry system of our downscaled re-
sults and the ESMs. The downscaled results depict a more buffered, 
higher pH and Ωarag system at the start of the 21st Century, compared to 

the ESM output. This difference is pertinent for determining when water 
conditions will pass certain Ωarag and pH thresholds experimentally 
shown to negatively impact marine organisms. 
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